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Regulation of protein–protein binding by coupling
between phosphorylation and intrinsic disorder:
analysis of human protein complexes†
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Anna R. Panchenko*a

Phosphorylation offers a dynamic way to regulate protein activity, subcellular localization, and stability.

The majority of signaling pathways involve an extensive set of protein–protein interactions, and

phosphorylation is widely used to regulate protein–protein binding by affecting the stability, kinetics

and specificity of interactions. Previously it was found that phosphorylation sites tend to be located on

protein–protein binding interfaces and may orthosterically modulate the strength of interactions. Here

we studied the effect of phosphorylation on protein binding in relation to intrinsic disorder for

different types of human protein complexes with known structure of the binding interface. Our results

suggest that the processes of phosphorylation, binding and disorder–order transitions are coupled to

each other, with about one quarter of all disordered interface Ser/Thr/Tyr sites being phosphorylated.

Namely, residue site disorder and interfacial states significantly affect the phosphorylation of serine and

to a lesser extent of threonine. Tyrosine phosphorylation might not be directly associated with binding

through disorder, and is often observed in ordered interface regions which are not predicted to be

disordered in the unbound state. We analyze possible mechanisms of how phosphorylation might

regulate protein–protein binding via intrinsic disorder, and specifically focus on how phosphorylation

could prevent disorder–order transitions upon binding.

Introduction

Intrinsically disordered proteins (IDPs) play many functions in
a cell.1 They lack a single well-defined structure and are
characterized by specific amino acid composition, a propensity
for post-translational modifications, and the ability to bind to
many different partners. The abundance of disordered proteins
inside the cell is tightly controlled at the synthesis and degra-
dation levels.2 Many studies have suggested that intrinsically
disordered regions may undergo disorder–order transitions, i.e.
folding upon binding.1,3 At the same time, disorder may play an
important functional role in protein complexes,4,5 especially
in homooligomers6 without evident disorder–order transition.

Nevertheless the relationship between disorder and binding is
not fully understood.

The importance of disorder in protein–protein interactions
is apparent from analysis of protein–protein interaction net-
works. Several studies showed that hub proteins in interaction
networks have more disordered residues than non-hubs7–9 and
that there may be a weak correlation between the disorder of a
protein and the number of its partners.8,10,11 Other studies
observed that hubs binding multiple partners using the same
interface region might have a higher fraction of disordered
residues than non-hub proteins.12 However, binding interfaces
were found to be less disordered than non-interface positions
within both full-chain proteins13 and domain regions.11

The functional diversity of disordered proteins, their multi-
binding properties, and their propensity for posttranslational
modifications allow them to play a unique role in signaling
networks.9,14 Indeed, signaling proteins were previously found
to have significantly greater disorder than proteins with other
functions.15,16 One way to regulate protein activity, subcellular
localization, and stability is through protein covalent modifica-
tions, and phosphorylation is one of the most abundant classes of
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protein covalent modifications.17 Indeed, recent phospho-
proteomic analyses have revealed that the majority of proteins
in a mammalian cell are phosphorylated18 so regulatory mecha-
nisms involving phosphorylation are very widespread. The
dynamic regulation of cellular processes can be achieved
through reversibility and the fast kinetics of phosphorylation.
Adding or removing a dianionic phosphate group on a protein
changes its physico-chemical properties and can affect the
stability, kinetics, and dynamics of the protein.19

Recently, we studied the coupling between phosphorylation
and protein–protein binding by examining binding interfaces
and locations of phosphosites in protein structural complexes.20

We found an association between phosphorylation sites and
binding interfaces. Since phosphorylation has been previously
linked to intrinsic disorder, one possible mechanism of
coupling between phosphorylation and protein binding might
involve disorder–order or order–disorder transitions. Indeed
several examples of disorder–order as well as order–disorder
transitions upon phosphorylation were reported previously.2,21,22

Here we study the effect of phosphorylation on protein binding
in relation to intrinsic disorder for all available protein struc-
tural complexes from the human proteome with known phos-
phorylation sites. Our results suggest that the processes of
phosphorylation and binding via disordered regions might be
coupled to each other, with one quarter of all disordered
interface sites being phosphorylated. Residue disorder,
interfacial states and the type of protein complex (homo or
heterooligomer) are significantly correlated with the phos-
phorylation of threonine and, to an even greater extent, of
serine. We suggest that serine is especially important for
disorder–order or order–disorder transitions upon binding.
However, tyrosine phosphorylation does not appear to be
directly associated with binding through disorder–order transi-
tions based on our dataset. We discuss possible functional
roles of phosphorylation in regulating the coupling between
disorder and binding.

Materials and methods
Identification of phosphorylation sites on homo- and
heterooligomers

We compiled a data set consisting of all human protein com-
plexes of known three-dimensional structure from the Protein
Data Bank (PDB) as described previously.20 We then removed
redundant proteins using BLAST p-value threshold of 10�7.23

A complex was considered homooligomeric if pairwise sequence
identity was higher than 90% for all pairs of chains in the
complex, otherwise it was defined as heterooligomeric.
Phosphorylation sites were derived from PhosphoSitePlus,24

Phospho.ELM,25 and PHOSIDA26 databases. Then, phosphory-
lation sites identified by high-throughput methods were addi-
tionally verified by the GPS 2.1 program.27 All phosphorylation
sites were mapped onto protein structures in the PDB using
alignments calculated by the MUSCLE program.28 The oligo-
meric states and binding interfaces were defined by PISA,29

the solvent accessible surface area (ASA) of each residue was

provided by PISA, and converted into relative ASA based on
accessible surface area of Gly-X-Gly tripeptides. As a result we
obtained 1983 phosphorylation sites on 382 homooligomeric
and 551 heterooligomeric human complexes, only two of which
were kinase–substrate complexes. Some of the complexes con-
tained largely disordered proteins with a relatively short struc-
tured region bound to a structured partner. A larger group
consisted of cases where both partners had well-defined struc-
tures. The majority of protein complexes in our study (and in
PDB in general) did not have the actual phosphate group in the
crystallized structure.

Prediction of intrinsically disordered regions

Disordered regions were predicted using the Disopred30 and
PONDR-FIT31 programs. We defined disordered sites as those
predicted as disordered by both methods. We sped up Disopred
calculations by generating sequence profiles using PSI-BLAST
against the Uniref50 database (instead of the default non-
redundant database), otherwise retained the default para-
meters. PONDR-FIT predictions were obtained by submitting
sequences to the webserver (http://www.disprot.org/pondr-fit.php).
These predictors are expected to be complementary as they
measure somewhat different properties of a protein. Disopred
is a support vector machine method trained on sequence
profiles of disordered and ordered regions in crystallized
structures. PONDR-FIT is a meta-predictor that combines and
improves on the results of PONDR-VLXT, PONDR-VSL2,
PONDR-VL3, older meta-predictors;32 FoldIndex (uses pairwise
inter-residue energy);33 IUPred (uses hydrophobicity and net
charge properties);34 and TopIDP (uses amino acid propensities
for disorders).35 PONDER-FIT and DISOPRED identified 474
and 435 phosphorylation sites as disordered respectively. Overall,
248 out of 1983 phosphorylation sites and 996 out of 31 071 Ser,
Thr, and Tyr non-phosphorylation sites were identified on
disordered regions by both methods.

Statistical tests, log-linear analysis

We performed log-linear analysis which examines the distribu-
tion of frequencies in the contingency tables involving several
variables and tried to explain the variation observed between
the cells of the table as a function of (in)dependence between
variables.36 For example, consider three variables X, Y and Z
which might take values between (1,. . ., I), (1,. . ., J), and (1,. . ., K),
respectively. The log-linear model would involve all possible one-
way, two way and three-way associations between the variables.
Most of our variables are binary and we represent the two
categories as values 0 or 1. Then the logarithm of expected
frequency for cell ijk can be written as:

log mijk = m + lX
i + lY

j + lZ
k + lXY

ij + lXZ
ik + lYZ

jk + lXYZ
ijk

where m is the mean of the logarithms of the expected frequen-
cies, l are parameters characterizing the effect of categories of
different variables. If the parameter corresponding to inter-
action XY is equal to zero, then no interaction between vari-
ables is observed. The goal is to construct a model such that the
cell frequencies in a contingency table are accounted for by the
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minimum number of terms. Each model is evaluated based on
its ability to reproduce the observed cell counts in the table
using maximum likelihood. The null hypothesis is that the model
generates predicted data that are not significantly different from
the observed table. Therefore, good models have p-values larger
than 0.05.

We used several other tests to study the (in)dependence of
different factors and their effect on the fraction of phosphorylation
sites. To analyze the dependence of phosphorylation on other
factors we used ANOVA (‘‘Analysis of Variance’’). We supported our
conclusions using Kruskal–Wallis analysis of variance which is a
non-parametric method for testing whether samples originate
from the same distribution and if they are independent. Unlike
ANOVA, Kruskal–Wallis analysis does not assume the normal
distribution of each feature. Finally we applied Duncan’s multiple
range test to compare multiple means and determine which mean
values differ from each other. To perform statistical tests we used
Splus, R and STATISTICA packages.37

Results
Correlation and cluster analyses

We represent each variable in a binary form and assign zero
or one if a given feature is present or absent at a given site
(phosphorylated/non-phosphorylated, disordered/ordered, interface/
non-interface). We use five different categorical variables: phos-
phorylation (P), disorder (D), interface (I), type of residue (T), and
homo/hetero oligomerization state (H). In addition, all sites are
separated into solvent accessible and buried sites. Regions that
have coordinates in structures and are not predicted to be
disordered are referred to as ‘‘ordered’’.

Here we are trying to understand which of these features
contribute significantly to the observed distribution of our
data, and whether this is a result of interactions between
features or the result of their independent effects. First we
calculated Spearman rank correlation coefficients between our
different variables and found statistically significant positive
correlations for all three types of residues (Ser, Thr, and Tyr)
between phosphorylation and disorder (the strongest correla-
tion); between phosphorylation and interface; and between
disorder and interface (Table S1, ESI†). We also performed
cluster analysis (Fig. 1) using the Manhattan distance as a
distance measure and a weighted pair-group clustering algorithm

(the choice of distance metric or clustering algorithm did not
affect the shape of the cluster tree). As one can see from the
cluster tree, disorder and phosphorylation are clustered together
at the first step, then the interface, and homo/heterooligomer
features merged at the successive stages.

Examining concurrent relationships between features by
log-linear analysis

Frequency distributions of different variables were compared
by categories using Fisher’s exact test (Table S2, ESI†). Since a
significant fraction of phosphorylation sites (30%) is directly
located on binding interfaces and (de)phosphorylation on
binding interfaces might be associated with the intrinsic dis-
order through the disorder–order or order–disorder transitions,
we performed the multivariate analyses outlined below.

First, we performed log-linear analysis, which examines the
distribution of frequencies in the contingency tables and tests
the conditional relationships between two or more discrete,
categorical variables with no distinction between independent
and dependent variables. We tested several models corresponding
to different sets of variables, and for each set of variables the best
model was reported. The interactions between phosphorylation
and disorder variables (denoted ‘‘PD’’), between phosphorylation
and interface (‘‘PI’’), disorder and interface (‘‘DI’’) and oligo-
merization state and interface (‘‘IH’’) were examined. As can be
seen from Table 1, some of the best models included only
pairwise interaction terms between variables. The null hypothesis
is that the model generates predicted data that are not signifi-
cantly different from the observed table, therefore good models
have higher p-values and require p-values larger than 0.05. The
interactions between phosphorylation and disorder variables
(PD), and interactions of PI, DI and IH were observed for all three
residue types (Ser/Thr/Tyr), while interactions of PH and DH were
found only for two out of three residues. The model for Tyr was of
lower quality compared to Ser and Thr (Table 1), and overall the
models did not change their form if only solvent-accessible
residues or all residues (accessible and buried) were considered.
In fact 87% of phosphorylation sites in our dataset were either
solvent accessible or interfacial.

Fig. 1 Cluster tree showing the association between phosphorylation, disorder,
interface and homo/heterooligomeric states. The clustering was done with the
Manhattan distance used as a distance measure and the weighted pair-group
clustering algorithm.

Table 1 The results of log-linear analysis. The following notations are used: PD –
interaction between phosphorylation and disorder features; PI – phosphorylation
and interface; DI – disorder and interface; PH – phosphorylation and homo-
oligomer; IH – interface and homooligomer; DH – disorder and homooligomer.
‘‘T’’ is a residue type. Good models have p-values larger than 0.05. Here we used
all residues but the models did not change their form if only solvent-accessible
residues were considered. The exception is the model for all three residues
(last row of the table) which, in the case of solvent accessible residues, included
only three interaction terms (PIH, DI, and PD)

Model
Residue
type

Pearson
chi-square

Degrees of
freedom p-Value

PD + PI + DI + PH + IH Ser 3.83 6 0.70
PD + PI + DI + IH +
DH + PH

Thr 3.43 5 0.64

PD + PI + DI + IH + DH Tyr 7.16 6 0.31
DI + PDT + DTH +
ITH + PIH

Ser + Thr +
Tyr

9.98 20 0.97
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Dependence of phosphorylation on other variables

Next we chose phosphorylation as a dependent variable to
assess its dependence on several other variables. We introduce
here a new categorical joint variable with four different levels
depending on the disorder and the interface state of a given
site. The first level of joint variable corresponds to the cases of
interface sites which are at the same time predicted intrinsi-
cally disordered (D = 1, I = 1), these regions might undergo
disorder–order transition while binding to other proteins.
Similarly other levels correspond to disordered non-interface
(D = 1, I = 0), ordered interface (D = 0, I = 1) and ordered non-
interface (D = 0, I = 0) regions. Non-interface sites are defined as
all residues in a given category excluding interface residues. To
analyze the dependence of phosphorylation on other variables
we used ANOVA, and non-parametrical methods (Kruskal–
Wallis test). Fig. 2 shows the influence of different levels on
residue phosphorylation for those residues which are solvent
accessible in the unbound state; the overall results did not
change if we analyzed all protein residues instead. The results
obtained by the non-parametric Kruskal–Wallis test were con-
sistent with the results obtained by the ANOVA. We found that,
overall, disorder and interface significantly influenced phos-
phorylation of serine and threonine (p-value { 0.01) and to a
lesser extent of tyrosine (p-value = 0.02). The largest fraction of
phosphorylated residues on disordered binding regions was
obtained for Ser (28% of all serines on disordered interfaces
were phosphorylated), followed by Tyr (27%) and Thr (20%).

Then we used multiple comparison methods (Dunkan and
Kruskal tests) and found that phosphorylation on the disordered
interface exceeded the phosphorylation on disordered non-interface,

ordered interface and ordered non-interface regions (p-value =
0.005, Fig. 2A). However, if Ser, Thr and Tyr are examined
separately, the null hypothesis that phosphorylation on the
disordered interface exceeds phosphorylation on disordered
non-interface regions (first and second levels on Fig. 2) holds
true only for serine (p-value = 0.009) but not for threonine
(p-value = 0.08) or tyrosine (p-value = 0.14). For all three
residues, phosphorylation on ordered interface regions was
higher than that on the ordered non-interface region (p-values =
0.0001, third and fourth levels in Fig. 2).

Heterooligomers showed higher fraction of phosphorylation
sites compared to homooligomers for disordered interfaces
(D = 1, I = 1), for ordered interfaces (O = 1, I = 1), and for all
three residues taken together (p-value = 0.04 and p-value { 0.01
respectively, Fig. 2A). Similar trends were observed if we con-
sidered solvent-accessible residues separately or considered all
residues (Fig. S2, ESI†). In summary, while only a small fraction
of binding interfaces in structured complexes contains pre-
dicted disordered regions, and most phosphorylation sites are
located on ordered interface regions (Fig. S1, ESI†), there is a
strong association between phosphorylation and the disordered
interface: while 25% of disordered interface Ser/Thr/Tyr sites
are phosphorylated, only 8% of ordered interface Ser/Thr/Tyr
sites are phosphorylated.

Functional importance of phosphorylation on disordered
interfaces

As we mentioned previously there are examples where phos-
phorylation might happen on ordered flexible or inflexible
regions.20 Here we focus instead on functional mechanisms of

Fig. 2 Dependence of fraction of phosphorylation sites on different factors. Fraction of phosphorylation sites on solvent accessible regions is calculated for each level
of joint variable: D = 1, I = 1: disordered interface; D = 1, I = 0: disordered noninterface; D = 0, I = 1: ordered interface and D = 0, I = 0: ordered noninterface. Error bars
indicate 95% confidential interval. Homo and heterooligomers are shown in red and blue, respectively.
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regulation of disorder–order or order–disorder transitions upon
binding. We provide examples that show how phosphorylation
might prevent binding and possible disorder–order transition
and, in some cases, facilitate binding to another partner, which
competes with the first one. For all discussed complexes, binding
interfaces are predicted to be disordered and phosphorylated,
though ordered and unphosphorylated in the bound state.

p21 is an important protein in cell cycle arrest in response to
DNA damage. It blocks the progress of cell-cycle by binding to
cyclin-dependent kinases (CDKs). It can also inhibit DNA
replication directly by binding to proliferating cell nuclear anti-
gen (PCNA) which is an accessory protein of DNA polymerases
delta and epsilon. The full length p21 protein does not have any
stable structure in solution but can form an ordered stable
conformation upon binding to the target proteins, such as
CDKs38 or PCNA.39 Residue Thr145 of p21 is located in the PCNA
binding region (region from 144 to 151 residues, Fig. 3A) and its
phosphorylation may inhibit the association with PCNA, which
allow PCNA bind to other components of the polymerase.40

Another example is the Rho GDP-dissociation inhibitor 1
(RhoGDI1) which regulates Rho family GTPase in several ways
(Fig. 3B). RhoGDIs can inhibit Rho proteins by preventing the
release of GDP and the loading of GTP and can transfer inactive
Rho proteins from cell membranes to prevent their degradation
and inappropriate activation. Phosphorylation of RhoGDI Ser,
Thr and Tyr residues is very important for its function, and
phosphorylation of multiple sites can promote the release of
multiple Rho proteins simultaneously.41 The key functional
region is its N-terminal domain which is disordered. However,
it can form two helices and bind to switch I and switch II regions
of GTPase to restrain the conformational changes required for
exchange of GDP and GTP.42 Tyr27 on the disordered N-terminal
domain of RhoGDI1 can be phosphorylated and is located on the

binding interface. It has been shown that its phosphorylation
promotes dissociation of RhoA, Rac1, and cdc42 from RhoGDI1
and makes GTPases available for activation.43

The third example is Na(+)/H(+) exchange regulatory cofactor
NHERF1, an adaptor protein which connects plasma membrane
proteins to other membrane-cytoskeleton proteins, and hence
regulates cell shape and migration. NHERF1 consists of three
regions: ordered PDZ domains (PDZ1 and PDZ2) interacting with
the cystic fibrosis transmembrane conductance regulator (CFTR)
and disordered C-terminal ERM binding region which associates
with ERM domains in membrane-cytoskeleton proteins. Addi-
tionally this disordered C-terminal region is used for the auto-
inhibition mechanism of NHERF1; the region interacts with the
PDZ2 domain and prevents PDZ2 from binding to CFTR. In both
cases, the C-terminal region becomes ordered upon binding to
other proteins.44 An earlier experimental study revealed that
phosphorylation on Ser339 and Ser340 in the C-terminal region
disrupts the binding between the C-terminal region and the PDZ2
domain, hence increasing the binding affinity of PDZ2 to CFTR.45

Discussion

Our previous analysis of the intrinsic disorder of human
proteins participating in certain relationships in biochemical
pathways showed that gene expression, phosphorylation and
protein–protein binding/association relations are consistently
enriched in disorder.16 In our later paper we analyzed regula-
tory roles of phosphorylation in protein–protein association or
dissociation by focusing on the structural complexes with
known binding interfaces.20 Here, we study different factors
that might contribute to the regulation of protein binding by
phosphorylation and intrinsic disorder.

First, we found a significant association between phos-
phorylation, disorder and interface states for residue sites in human
protein complexes. The disordered interface and homo/hetero-
ligomer states significantly correlate with the phosphorylation
of all three residues (Ser, Thr and Tyr). This signal is most
pronounced for serine and diminishing for threonine and
tyrosine in this order. We also found that for serine the
phosphorylation on disordered interfaces exceeded the phos-
phorylation on disordered non-interface regions.

Short structured protein regions within longer disordered
sequences that enhance molecular recognition and binding to
larger proteins (MoRFs) were found to contain 45%, 36%, and 19%
of pSer, pThr, and pTyr respectively.46 Here we analyzed possible
disorder–order transitions in structural complexes, not completely
disordered proteins and found similar but not identical fractions
of pSer, pThr and pTyr on disordered binding interfaces: 59%,
26% and 15% respectively. These fractions were quite different for
ordered structured interfaces, where pTyr occupied half of all
phosphorylated residues followed by pSer (28%) and pThr (22%).

Indeed, serine is commonly found in disordered regions of
proteins, especially in disordered protein hubs in protein–protein
interaction networks.8 Here we suggest that this might be driven
by the exceptional functional role of serine in disorder–order
transition type binding. While Ser and Thr are frequently found

Fig. 3 Examples of phosphorylation sites on disordered interface regions.
Phosphorylation sites are shown in blue stick models. (A) p21–PCNA complex
(PDBID: 1AXC, chain A, B). p21 (colored in yellow) forms an ordered conformation
upon binding to PCNA (green). (B) RhoGDI–Rac1 complex (PDBID: 1HH4, chain B, E).
RhoGDI has a C-terminal domain (shown in cyan) and a flexible N-terminal region
(yellow) which become ordered upon binding to Rac1 (pink).
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in disordered and flexible regions, Tyr is more likely to be
found in structured regions. Unlike serine and threonine,
phosphorylation of nearly half of pTyr is associated with
protein structural domains.47 In contrast to serine and threo-
nine, tyrosine does not have a tendency to be in disordered
compared to ordered regions,22 which is a characteristic of
thermostable complexes48 and is depleted among MoRFs.46

Binding mediated by disorder has certain advantages. It allows
a protein structure to adapt to multiple interaction interfaces and
may provide large interface regions exposed by disordered regions.
Disorder may also play a key role in molecular adaptation to
different environmental constraints: highly unstructured, rapidly
evolving viral proteins on the one hand and highly structured
proteins from thermophilic organisms on the other hand.49,50

Since disordered proteins and disordered binding regions lack
structures, the relationship between disorder and binding is very
difficult to decipher.

There is a limited though growing number of examples of
experimentally verified disorder–order and order–disorder transi-
tions, and several attempts have been made to understand the
underlying principles of molecular recognition by disordered
regions. For example, physicochemical features of interfaces formed
by disordered proteins were found to be quite different from those
formed by structured proteins: disordered protein interfaces had a
large number of contacts per residue, exhibited prominent prefer-
ence for hydrophobic residues and were localized linearly on the
primary sequence.4,51 Moreover, the high number of inter-chain
compared to intra-chain contacts was shown to be a signature of
disordered binding segments.52 In addition, disorder–order transi-
tion might allow uncoupling of binding affinity from specificity and
provide kinetic advantages through fly-casting mechanisms.53

Here we attempted to decipher the principles of recognition
through coupling of phosphorylation, binding and disorder. We
showed that one of the reasons of association of phosphorylation
sites with disordered regions could be their direct involvement in
binding processes, and quantified this association for human
protein complexes. Finally we suggested functional mechanisms
for how phosphorylation can control disorder–order and order–
disorder transitions and regulate protein–protein binding.
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